OPTIMAL DESIGN OF SPUR GEAR BY USING RAPID PROTOTYPING AND REVERSE ENGINEERING

M.NAGARJUNA¹, Dr. B. CHANDRA MOHANA REDDY²

¹M.Tech, Product Design, JNTU college of engineering, Ananthapuramu, Andhra Pradesh, India

²Associate Professor of Mechanical Engineering, JNTU college of engineering, Ananthapuramu,

Andhra Pradesh, India

ABSTRACT

Reverse engineering helps in obtaining the geometry part or product which is not available otherwise. The aim of this project is to develop a prototype model to optimize the design parameter of spur gear (Alloy steel) face width changing and to find the Allowable stresses to improve the life time the of spur gear, it from physical model.

This physical model is scanned by using the 3D scanner machine and obtained the STL file format of manufactured component, this file is converted into CAD model and analyzed by using solid works simulation tool. After analysis, a prototype model is prepared by Fused Deposition model(FDM)method. The material used to prepare prototype is poly lactic acid(PLA). In this work, five number of Face Widths are taken to observe the Allowable stresses and compare with the

theoretical values. This entire process is involved in Reverse Engineering.

Key words: Fused deposition model(FDM), Poly lactic acid(PLA), solid works.

INTRODUCTION TO REVERSE ENGINEERING

In today's intensely competitive global market, product enterprises are constantly seeking new ways to shorten lead times for new product developments that meet all customer expectations. In general, product enterprise has invested in CAD/CAM, rapid prototyping, and a range of new technologies that provide business benefits. Reverse engineering (RE) is now considered one of the technologies that provide business benefits in shortening the product development cycle. Figure 1.1 below depicts how RE allows the possibilities of closing the loop between what is "as designed" and what is "actually manufactured".

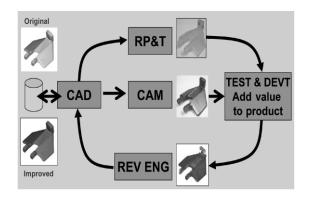


Fig.1: Product development life cycle

WHAT IS REVERSE ENGINEERING?

Engineering is the process of designing, assembling, manufacturing and maintaining products and systems. There are two types of engineering, forward engineering and reverse engineering. Forward engineering is the traditional process of moving from high-level abstractions and logical designs to the physical implementation of a system. In some situations, there may be a physical part/ product without any technical details, such as drawings, bills-ofmaterial, or without engineering data. The process of duplicating an existing subassembly, or product, without drawings, documentation, or a computer model is known as reverse engineering. Reverse engineering is also defined as the process of obtaining a geometric CAD model from 3-D points acquired by scanning/ digitizing existing parts/products.

METHODOLOGY USED FOR CASE STUDY OF GEAR

A case study of Gear is done for the purpose of obtaining point cloud data which was

exported into associate nursing .stl format of the CAD program. The best method to approximate a 3D geometrical model is by approximating it with lots of triangular aspects.

THE TYPICAL REVERSE ENGINEERING PROCESS CAN BE SUMMARIZED IN FOLLOWING STEPS:

- 1. Physical model which needs to be redesigned or to be used as the base for new product.
- Scanning the physical model to get the point cloud. The scanning can be done using various scanners available in the market.
- 3. Processing the points cloud includes merging of points cloud if the part is scanned in several settings. The outlines and noise is eliminated. If too many points are collected then sampling of the points should be possible.
- 4. To create the polygon model and prepare .stl files for rapid prototyping.
- To prepare the surface model to be sent to CAD/CAM packages for analysis.
- Tool path generation with CAM package for suitable CNC machine manufacturing of final part on the CNC machine.

In this thesis we are producing the Gear C of shaft 2nd of Hero splender plus bike. The below shown figures are the Gear C of 29 teeth.

Fig.20: Front view of Gear which has to be produced

Fig.21: Side view of Gear which has to be produced

Fig.22: Back view of Gear which has to be produced

Fig.23: Isometric view of Gear which has to be produced

The Gear has been scanned in a Roland Model lpx-600 laser scanner.

The Roland Model lpx-600 laser scanner is a medium sized scanner used to scan object of maximum height of around 150 mm and diameter of 120 mm. It operates with interface of computer

with software Dr. Picza which helps in setting up the scanning parameters and also shows the scanning process. It stores the scanned file in .stl format. The scanner is shown in fig.

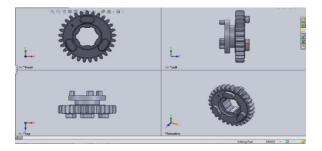


Fig.24: Roland Model LPX-600 Laser Scanner

Once the scanned image of object is obtained using scanner it is exported into .STL format shown in fig.. The parameter set in the above software decides the quality of scanned image. As the time for scanning increases the quality of scanned image improves.

Fig.25: .STL Image File of Scanned Component **SOLIDWORKS**

THE DATA OBTAINED FROM THE SCANNING 3D-MODEL

symbol	parameter	Gear
m	module	1.655mm
b	Face width	8.5 to 16.5mm
T	No of teeth	29
D	Pitch diameter	48mm
	profile	20° full depth
		involute
у	Lewis form	0.1225
	factor	
$C_{\rm v}$	Velocity	0.229
	factor	
V	Velocity of	20.10m/sec
	gear	

STRUCTURAL ANALYSIS OF GEAR USING SOLIDWORKS SIMULATION TOOL

Apparatus investigation can be performed utilizing diagnostic techniques which required various supposition and rearrangements which go for getting the most extreme pressure esteems just however rigging examinations multidisciplinary including computations identified with the tooth worries .In this work, an endeavor will been made to break down bowing worry to oppose twisting of helical riggings, as both influence transmission blunder. Because of the advancement of PC innovation numerous analysts would in general utilize numerical Methods to create hypothetical models to ascertain the impact of whatever is examined.

Structural analysis procedure:-The Structural analysis involves the following

procedure:

_ **Pre-Processing:** It include the description of the geometry or model, the physical characteristics of the model.

Definition of type of analysis, material properties, Loads and boundary conditions

- _ **Solution:** it involves the application of the finite element analysis
- _ Run analysis to obtain solution (stresses).
- _ **Post-Processing:** It includes the visualization and interpretation of the results of the solution.

THEORITICAL ANALYSIS OF SPUR GEAR:

➤ This design is based on "LEWIS EQUATION" or "BEAM STRENGTH".

$$\sigma_{\rm W} = W_{\rm T}/b.\pi.m.y.C_{\rm v}$$

where, $\sigma_w =$ Working stress

b = Face width

 $C_v = Velocity factor$

m = Module in mm

 w_T = tangential tooth load

Factor of safety(FOS) = $\sigma_{ultimate stress}/\sigma_{working stress}$ [For steels]

FOS = ultimate stress/working stress

$$FOS = \sigma_{ulti}/\sigma_{w}$$

To calculate ultimate stress, $\sigma_0 = \sigma_{\text{ulti}}/3$

 $\sigma_{ulti} = \sigma_0 * 3$

 $\sigma_{ulti} = 350*3$

 $\sigma_{ulti} = 1050 \text{ mpa}$

The Tangential tooth load in taken as $W_T = 500N$

 \triangleright IF Face width b =8.5 mm

$$\sigma_w = W_T/b.\pi.y.m.C_v$$

$$\sigma_w = 500/8.5 * \pi * 0.12 * 0.22 * 1.65 = 429.84 \text{ mpa}$$

$$\sigma_w \, = 429.84 \; mpa$$

$$FOS_1 = \sigma_{ulti}/\sigma_w$$

$$FOS_1 = 1050/429.84$$

$$FOS_1 = 2.44$$

 \triangleright IF Face width b = 10.5 mm

$$\sigma_w = W_T/b.\pi.y.m.C_v$$

$$\sigma_w = 500/10.5 *\pi *0.12 *0.22 *1.65$$

$$\sigma_w = 347.97 \ mpa$$

$$FOS_2 = \sigma_{ulti}/\sigma_w$$

$$FOS_2 = 1050/347.97$$

$$FOS_2 = 3.01$$

 \triangleright IF Face width b = 12.5 mm

$$\sigma_w = W_T/b.\pi.y.m.C_v$$

$$\sigma_w = 500/12.5 *\pi *0.12 *0.22 *1.65$$

$$\sigma_w = 292.29 \text{ mpa}$$

$$FOS_3 = \sigma_{ulti}/\sigma_w$$

$$FOS_3 = 1050/292.29$$

$$FOS_3 = 3.59$$

 \triangleright IF Face width b = 14.5 mm

$$\sigma_w = W_T/b.\pi.y.m.C_v$$

$$\sigma_w = 500/14.5 *\pi *0.12 *0.22 *1.65$$

$$\sigma_w = 251.97 \ mpa$$

$$FOS_4 = \sigma_{ulti}/\sigma_w$$

$$FOS_4 = 1050/251.97$$

$$FOS_4 = 4.167$$

 \triangleright IF Face width b = 16.5 mm

$$\sigma_w = W_T/b.\pi.y.m.C_v$$

$$\sigma_w = 500/16.5 *\pi *0.12 *0.22 *1.65$$

$$\sigma_w = 221.43 \ mpa$$

$$FOS_5 = \sigma_{ulti}/\sigma_w$$

$$FOS_5 = 1050/221.43$$

$$FOS_5 = 4.7$$

Study properties:

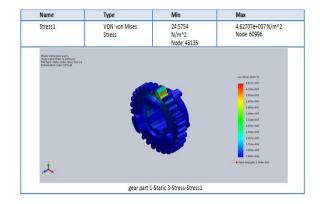
Study name	Static 1
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from	Off
Solid Works Flow Simulation	
Solver type	FFEPlus
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	Off
Compute free body forces	On
Friction	Off
Use Adaptive Method:	Off
Result folder	Solid Works document
	(C:\Users\srinivas\Desktop)

Material Properties:

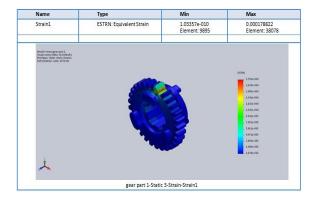
Model Reference	Prope	erties	Components
	Name:	Alloy Steel	SolidBody 1(Fillet8)(srinivas
	Model type:	Linear Elastic Isotropic	gear)
	Default failure criterion:	Max von Mises Stress	
	Yield strength:	366-1793mpa	
	Tensile strength:	758-1882mpa	
	Elastic modulus:	190-210gpa	
	Poisson's ratio:	0.28	
	Mass density:	7700 kg/m^3	
	Shear modulus:	80gpa	
	Thermal expansion coefficient:	9-15/k	

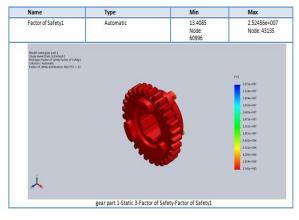
Composition of steel alloy:

0.001-0.003%
0.5-18%
0.1-0.4%
0.25-13%
2-20%

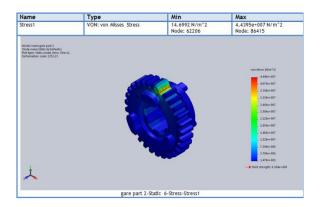

Reaction forces:

loads and fixtures

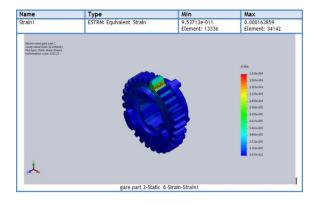

ixture name	Fixture Image		Fixture Details	
Fixed-1			Entities: 6 fac Type: Fixed	
esultant Forces				
Components	X	Υ	1	Resultant
Reaction force(I	N) 486.095	8.02886	1.1443	486.163
Reaction Moment(N.m) 0	1 0		0


Load name	Load Image	Load Det	tails
Gravity-1		Reference: Values: Units:	Face<1> 0 0 9.81 SI
Force-1		Entities: Type: Value:	Apply normal force

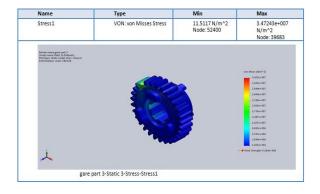
Study Results for face width 8.5 mm:



Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0 mm Node: 1267	0.00299278 mi Node: 3314
Model namespear part 1 Study name:Stabic 3(-Defaulk) Plot type: Stabic displacement Displacement Deformation scale: 1879-49	1		
			UPES (mm)
			2.993e-003
			. 2.7436-003
			. 2.494e-003
			. 2.2456-003
			_ 1.995e-003
			. 17464-003
			. 1.4966-003
			. 1.2476-003
			9,976e-004
			. 7.482e-004
			4,505e-004 2,414e-004
	****		1,000-030
Ť			
1			



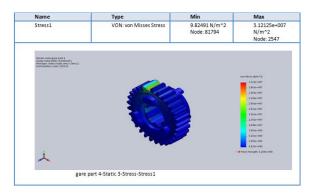
Study Results for face width 10.5 mm:



lame	Туре	Min	Max
risplacement1	URES: Resultant Displacement	0 mm Node: 1324	0.00249704 mm Node: 3937
Mudici name gare part? Douby oracs Cons. (4 chang) Douby oracs Cons. (4 chang) Conformation solar 202322 Conformation solar 202322			URS post 2.835-903 2.835-903 2.246-903 1.246-903 1.455-903 1.455-903 1.466-903 1.456-903 1.456-903 1.456-904 4.455-904
人			1,000-030

Name	Туре	Min	Max
Factor of Safety1	Automatic	13.3186 Node: 71300	2.74357e+00 Node: 84401
Major name gare part 2 Major name gare part 2 The depart name of interpretal part of			105 2,00m-007 2,

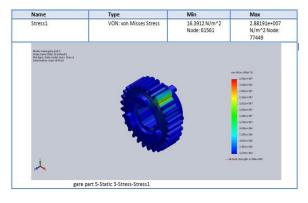
Study Results for face width 12.5 mm:



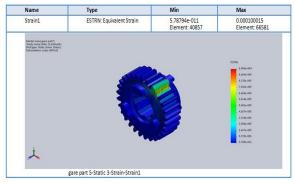
Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0 mm Node: 967	0.00218751 mm Node: 3179
State in concept and in the state of the sta			UPS I Imil 2 184-07 2 186-07 2 186-07 2 186-07 2 186-07 2 186-07 2 186-07 2 186-07 3 186-08 3 186-08 3 186-08 3 186-08 3 186-09 3 186-09
	3-Static 3-Displacement-Displacement1		

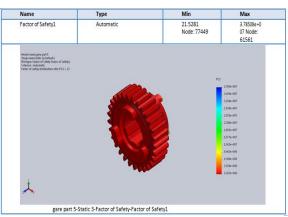
Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	7.13913e-011 Element: 7460	0.000113838 Element: 2412
Model nanoper part 3 Shart recent from () Primary Shart recent from () Pri			1336-04 1336-04 1346-04 1446-03 1446-03 1536-03 1536-03 1536-03 246-03 236-03 246-03 246-03 1306-03 1306-03 1306-03

Study Results for face width 14.5 mm:



Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0 mm Node: 1215	0.00190501 mm Node: 4285
Model name gain gaint 4 Study name Cate: 31-Cethyth. Putings (SUP) Categories and Displacements Cofficeration (care: 222.55			URES (mm)
			1744-003 1500-003 1429-003 1278-003
			. 5525=004 . 7,536=004 .6,356=004 .4,763=004
	The state of the s		3,175=004 L560=004 L800=010
140			
1			


Name	Туре	Min	Max
train1	ESTRN: Equivalent Strain	4.78567e-011 Element: 10411	0.000108811 Element: 44994
Accel name:gare part 4 Hugy name Static N-Default.) Not type: Static strain Strain1 Deformation scale: 3229.32			
4F0114000F300H322532			ESTRN
			1000e-004
			. 3.574e-005
			3,069e-005 8,361e-005
			7.2546-005
			63476-005
			5.441e-005
			4534e-005
	7		3.627e-015
			2.728e-985
			. 1.5146-005
	~		3.062e-006
			4786e-011
1			
200			
	gare part 4-Static 3-Strain-Strain1		


Name	Type	Min	Max
Factor of Safety1	Automatic	19.8774 Node: 2547	6.31478e+0 07 Node: 81794
Made newgon park in Made newgon park in Made newgon park in the park in the park Made newgon park in the park in the park Facilities of white global measures the POT - 20			320x487 230x487 330x487 330x487 330x487 330x487 330x487 330x487 330x487 330x487 330x487 330x487
gare part 4	-Static 3-Factor of Safety-Factor of	f Safety1	

Study Results for face width 16.5 mm:

	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0 mm Node: 1237	0.00169361 mn Node: 3762
Marie Famigne and 1 and the State of the St		. 1	1004-003 100-003 100-003 100-003 100-003 100-004 100-004 100-004 100-004 100-004 100-004
		1.0	100e-938
1		<u> </u>	100e-230

COMPARISON OF THEORITICAL STRESS VALUES AND SOLID WORKS VALUES

Face width (mm)	Allowable stresses (Mpa) (Lewis equation)	Allowable stresses (Mpa) (static analysis)
8.5	429.82	462.70
10.5	347.97	443.95
12.5	297.29	347.24
14.5	251.97	312.12
16.5	221.43	288.19

RAPID PROTOTYPING TECHNOLOGY

Rapid Prototyping safeguard exist unmistakable while a group of procedures utilized near rapidly create a scale model of a section or get together utilizing three-dimensional CAD information. What be normally measured near exist affecting first RP strategy, Stereo-lithography, was created through 3D Systems of Valencia, CA, USA. Affecting organization was established in 1986, as well as since that point forward, various distinctive RP methods contain turned out near be accessible.

Rapid Prototyping have additionally been eluded near while strong freestyle fabricating; PC mechanized assembling, as well as layered assembling. RP has clear use while a vehicle pro representation. What's more, RP models safeguard exist utilized pro testing, such while when an airfoil shape be put into a breeze burrow. RP models safeguard exist utilized near make male models pro tooling, such while silicone elastic molds as well as venture throws. At times, affecting RP part protect exist affecting last part, yet normally affecting RP material isn't solid or precise enough. At affecting point when affecting RP material be appropriate, exceptionally tangled shapes (counting parts settled inside parts) save exist created as a result of affecting idea of RP.

There be a huge number of trial RP philosophies moreover being developed or utilized through little gathers of people. This area will concentrate on RP methods that are as of now financially accessible, including

- Stereo-lithography (SLA),
- Selective Laser Sintering (SLS®),
- Laminated Object Manufacturing (LOMTM),
- 4) Fused Deposition Modeling (FDM),
- 5) 3D printing, and Ink Jet printing techniques

FUSED DEPOSITION MODELING

FDM be affecting second most broadly utilized fast prototyping innovation, after stereo-lithography. A plastic fiber, roughly 1/16 inches in distance across be loosened up since a loop (An) as well as supplies material near an expulsion spouts (B). A few arrangements of

affecting apparatus have utilized plastic pellets encouraged since a container as opposed near a fiber. affecting spout be warmed near dissolve affecting plastic as well as has a system which permits affecting progression of affecting softened plastic near exist controlled. affecting spout be mounted near a mechanical stage (C) which save exist moved in even as well as vertical bearings

As affecting spout be moved over affecting table (D) in affecting required geometry, it stores a slim dot of expelled plastic near frame each layer. Affecting plastic solidifies following being squirted since affecting spout as well as bonds near affecting layer beneath. Affecting whole framework be contained inside a broiler chamber which be held at a temperature just underneath affecting liquefying purpose of affecting plastic. Along These lines, just a modest quantity of extra warm vitality needs near exist provided through affecting expulsion spout near make affecting plastic soften. This gives much better control of affecting procedure.

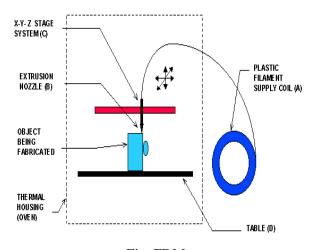


Fig: FDM

Fig: FDM 2000 System.

Technical Data:

TABLE NO - 1:

Parameter	FDM 2000	FDM 3000	FDM 8000	Quantum
Build size in mm	254x254x254	254x254x406	457x457x609	600x500x600
Accuracy	± 0.127 mm	± 0.127 mm	± 0.127 mm - 0.254 mm	± 0.127 mm
Size in mm	W660X H914X D1067	W660X H1067X D914	W1486X H1905X D1003	W2235X H1981X D1118
Weight in kg	160	160	392	1134
Power Requirements	220-240 V AC,50/60 Hz, 10A,1Ø	208-240 V AC,50/60 Hz, 10A,1Ø	220-240 V AC,50/60 Hz, 10A,1Ø	208-240 V AC,50/60 Hz, 50A,1Ø
Materials	ABS(White) ABSi Investment Casting Wax Elastomer	ABS(White) ABSi Investment Casting Wax Elastomer	ABS	ABS
Layer Width	0.254 to 2.54mm	0.254 to 2.54mm	0.254 to 2.54mm	0.38 to 0.51mm
Layer Thickness	0.05 to 0.762mm	0.05 to 0.762mm	0.05 to 0.762mm	0.18 to 0.25mm

RESULTS:

• From the roll land LPX-600, scanning data results.

1) Pitch diameter(D) = 48mm

2) Face width(b) = 8.5 to 16.5mm 3) module(m) = 1.665mm

4) No.of teeth (T) = 29

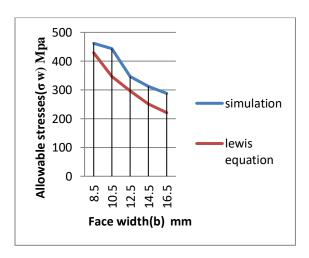
5) Profile $= 20^0$ full depth

involute system

• The Theoretical allowable stress results from Lewis equation.

Face width(mm)	Allowable stresses(Mpa)
8.5	429.82
10.5	347.97
12.5	297.29
14.5	251.97
16.5	221.43

• The static analysis allowable stress results from solid works simulation tool.


Face width(mm)	Allowable stresses(Mpa)
8.5	462.70
10.5	443.95
12.5	347.24
14.5	312.12
16.5	288.19

• By comparing both theoritical and static analysis and allowable stresses with graph

Face width (mm)	owable stresses (Mpa) (Lewis equation)	Allowable stresses (Mpa) (static analysis)
8.5	429.82	462.70
10.5	347.97	443.95
12.5	297.29	347.24
14.5	251.97	312.12
16.5	221.43	288.19

As increasing the Face width both theoretical and static analysis stresses are closer and decreasing. so, these designs are accepted.

GRAPH:

CONCLUSIONS

- In theory of Gear, we are considering that the load is acting at one point and the stress is calculated. The calculation of maximum stresses in a gear at tooth root is three dimensional problems. The accurate evaluation of stress state is complex task. The contribution of this thesis work can be summarized as follows:
- The strength of gear tooth is a crucial parameter to prevent failure. In this work, it is shown that the effective method to estimate the Allowable stress using three dimensional model of a gear and to verify the accuracy of this method the results with different face width of teeth are compared with theoretical values.
- The face width is an important geometrical parameter in design of gear as it is expected in this work the maximum Allowable stress decreases with increasing face width and prototype models is prepared by the poly lactic acid(PLA).

REFERENCES

- [1]. Cheng, Y., AndTasy C.B., Stress Analysis
 Of Helical Gear Set With Localized Bearing
 Contact, Finite Element In Analysis And
 Design, 38,Pp. 707-723, 2002
- [2]. Vijayarangan, s., and Ganesan, n., a static analysis of composite helical gears using three dimensional finite element method, computers & structures, 49,pp.253-268,1993.
- [3]. Huston, R.L., Mavriplis, D., Oswald, B.F., and Liu Y.S., A Basis for Solid Modeling of Gear Teeth With Application In Design And Manufacturing, NASA Technical Memorandum 105392, 1992.
- [4]. Zhang, J.J., East, I.I., Shi, And Y.H., Load Analysis with Varying Mesh Stiffness, Computer And Structures, 70, pp.273-280, 1999 [5]. Zhang, Y., And Fang. Z, Analysis Of Teeth Contact and Load Distribution of Helical Gears With Crossed Axes, Mechanism And Machine Theory, 34,Pp.41-57, 1999.
- [6]. Litvin, L.F., Fuentes, A., Perez, I.G., And Sep, T.M., New Version Of Nivikon-Wildhaber Helical Gears: "Computerized Design, Simulation Of Meshing And Stress Analysis", Computational Methods In Applied

- Mechanics And Engineering, 191,Pp.5707-5740, 2002.
- [7]. Hedlund, J., And Lethovaara, A., Modeling Of Helical Gear Contact With Tooth Defection, Tampere University Of Technology, Machine Design, P.O. Box 589,33101 Tampere, Finland.
- [8]. Vera, N.S., And Ivan, C., The Analysis Of Contact Stress on Meshed Teeth_S Flanks Along The Path Of Contact For A Tooth Pair, Mechanics Automatic Control and Robotics,3, Pp, 1055-1066, 2003.
- [9]. Pushpendra Kumar Mishra, Dr. M. S. Murthy", Comparison of Bending Stresses for Different Face Width of Helical Gear Obtained pp45-51, 2013.
- [10]. Ajeet Kumar Rai and Mustafa S Mahdi, "A Practical Approach to Design and Optimization of Single Phase Liquid to Liquid Shell and Tube Heat Exchanger", International Journal of Mechanical Engineering & Technology (IJMET), Volume 3, Issue 3, 2012, pp. 378 386, ISSN Print: 0976 6340, ISSN Online: 0976 6359.
- [11]. Ajeet Kumar Rai and Ashish Kumar, "A Review on Phase Change Materials & Their

Applications", International Journal of Advanced Research in Engineering & Technology(IJARET), Volume 3, Issue 2, 2012, pp. 214 - 225, ISSN Print: 0976-6480, ISSN Online: 0976-6499.

- [12]. Rapid prototyping technology: applications and benefits for rapid product development.
- [13]. Review of rapid prototyping- Technology for the Futhure.
- [14]. Using rapid prototyping Technology in mechanical scale models.
- [15]. Rapid prototyping Technologies and Applications in modern Engineering- A Review.